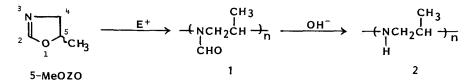
Cationic Polymerization

Cationic Polymerization of 5-Methyl-2-Oxazoline and Alkaline Hydrolysis of Product Polymer to Linear Poly(Propylenimine)

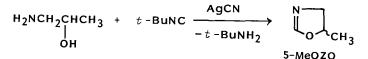
Shiro Kobayashi, Naoki Shimizu and Takeo Saegusa


Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan

SUMMARY

A new monomer of 5-methyl-2-oxazoline(5-MeOZO) was prepared. It was found that 5-MeOZO underwent the cationic ring-opening isomerization polymerization to produce poly(N-formylpropylenimine) 1 of waxy or powdery materials. Alkaline hydrolysis of 1 gave linear poly(propylenimine) 2. Polymers 1 and 2 are the same as the respective polymers derived from 4methyl-2-oxazoline.

INTRODUCTION


The ring-opening isomerization polymerization of 2-oxazolines is an attractive method to prepare poly(N-acylethylenimine)s having a nonbranched structure (1). The cationic ring-opening polymerization and its kinetic studies of 2-methyl-2-oxazoline(2-MeOZO) have been reported(2-4). L-4-Methyl-2-oxazoline(4-MeOZO) was polymerized and the alkaline hydrolysis of the resulting polymer produced optically active linear poly(propylenimine)(4). The present paper reports the cationic ring-opening polymerization of a new monomer of 5-methyl-2-oxazoline(5-MeOZO) and the alkaline hydrolysis of the product polymer 1 to linear poly(propylenimine) 2.

RESULTS AND DISCUSSION

Synthesis of 5-Methyl-2-oxazoline(5-MeOZO)

A new monomer of 5-MeOZO was prepared analogously to the mothod of 4-MeOZO based on the following reaction (5). The $^{1}\mathrm{H}$ NMR spectrum of

5-MeOZO(bp, 104-105°C) is shown in Figure 1.

Cationic Ring-Opening Polymerization and Polymer Structure 5-MeOZO has been found to polymerize via ring-opening with cationic

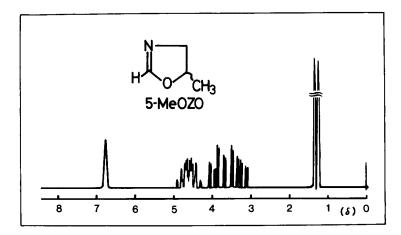


Figure 1. $^{1}\mathrm{H}$ NMR spectrum of 5-MeOZO (CDCl_3 with Me4Si).

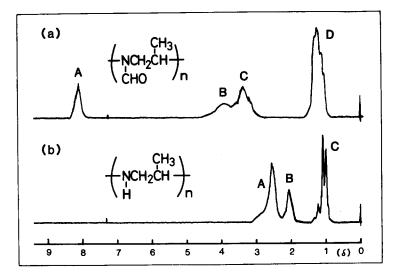


Figure 2. ¹H NMR spectra (CDCl₃ with Me₄Si) of (a) poly(N-formylpropylenimine) 1 and (b) poly(propylenimine) 2.

initiators. The activity of several initiators was examined (Table 1). Methyl p-toluenesulfonate(MeOTs), methyl iodide(MeI) and ethyl trifluoro-methanesulfonate(EtOSO_2CF_3) were moderately active. The molecular weight of the polymer was not high.

Polymerizat	ion of 5-MeOZO by Several Cationic	Initiators ^a	
Initiator	Polymer Yield(%)	Mol. Wt. ^b	
BF ₃ · OEt ₂	10		
H ₂ SO ₄	20		
Et ₂ SO ₄	23		
MeOTs	42	710	
MeI	30		
EtOSO ₂ CF ₃	46	960	

Table 1								
Polymerization	of	5-MeOZO	by	Several	Cationic	Initiators ^a		

a) 5-MeOZO = 10 mmol and initiator = 0.50 mmol in 1 ml of CH₃CN at 90°C for 40 hr under nitrogen.

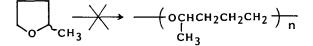
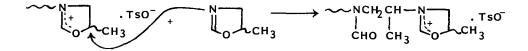

b) Determined by vapor pressure osmometry in DMF at 55°C.

Figure 2(a) shows a ¹H NMR spectrum of the polymer obtained by MeOTs initiator. Peak A at δ 8.1 is assigned to *N*-formyl proton(1H). Broad peaks B centered at δ 3.9 and C centered at δ 3.4 are due to methine(1H) and methylene protons(2H), respectively. Peak D at δ 1.3 is ascribed to methyl protons(3H). An IR characteristic band appears at 1660 cm⁻¹ due to the amide carbonyl group. These results lead to the polymer structure as poly(*N*-formylpropylenimine) 1. The NMR and IR data of 1 are very similar to those of poly(*N*-formylpropylenimine) prepared from 4-MeOZO (5), which supported the sturcture of 1.


4-MeOZO

All polymers obtained in Table 1 were waxy or powdery, hygroscopic materials. Although the polymer yield was not high under the reaction conditions of Table 1, the quantitative conversion of 5-MeOZO to polymer 1 was achieved with an increased amount of initiator. This finding is interesting because a corresponding methyl substituted cyclic ether of 2-methyltetrahydrofuran does not show a ring-opening polymerizability due

to a thermodynamically unfavorable energy change from monomer to polymer(6). In the case of the 5-MeOZO polymerization the energy gain is accomplished by the conversion of an imino ether (-N=C-0) to an amide group(>N-C=0) which is more stable due to an increased resonance energy of the latter group (7).

The general scheme of propagation by MeOTs initiator is given by the following reaction (8).

Linear Poly(propylenimine) 2

An alkaline hydrolysis of 1 was carried out by heating an aqueous methanol solution of NaOH containing 1 at 100°C for 100 hr. A waxy polymer was obtained, whose ¹H NMR spectrum is shown in Figure 2(b). The structure of poly(propylenimine) 2 has been established based on the following signal assignment, i.e., signal A at $\delta 3.1-2.3$ is due to methine and methylene protons(total 3H) and a doublet-like peak C is assigned as methyl protons (3H). The polymer is very hygroscopic, and hence, peak B at $\delta 2.1$ contains overlapping signals due to protons of NH and water. A signal due to formyl proton disappeared. The ¹H NMR spectrum of 2 is again very similar to linear poly(propylenimine) prepared from the polymer of 4-MeoZO(5).

EXPERIMENTAL PROCEDURES

Materials

Solvents were purified by distillation before use. Initiators of BF₃·OEt₂, MeOTs and MeI were commercial reagents and distilled under nitrogen before use. EtOSO₂CF₃ was prepared by the reaction of Et₂SO₄ with CF₃SO₃H, bp 55-58°C/100 mmHg(9). 1-Amino-2-propanol was a commercial reagent and purified by distillation. t-Butyl isocyanide was prepared by the dehydration of N-t-butylformamide with POCl₃ in the presence of pyridine in pentane, bp 92-95°C (10).

Monomer Synthesis

5-MeOZO was prepared analogously to the method of 4-MeOZO(5). A mixture of 1-amino-2-propanol (32 ml, 0.414 mol), t-butyl isocyanide (50 ml, 0.495 mol) and AgCN (2.83 g, 0.021 mol) was refluxed for 4 hr. The mixture was subjected to distillation and the fraction of bp 100-105°C was collected. This fraction was further distilled by using a distillation apparatus with a spinning-band to give 5-MeOZO, bp 104-105°C. ¹H NMR (CDC1₃ with TMS, 60 MHz): $\delta 6.8$ (s, =CH-O-, 1 H), $\delta 4.9$ -4.3 (m, CH(Me), 1H), $\delta 4.1$ -3.1 (m, CH₂, 2 H) and $\delta 1.3$ (d with J=6.0 Hz, CH₃, 3 H).

Polymerization of 5-MeOZO

A typical run was as follows. A mixture of 10 mmol of 5-MeOZO and 0.5 mmol of MeOTs in 1 ml of CH₃CN was kept at 90° C in a seald tube under nitrogen. After 40 hr the tube was opened. The conversion of 5-MeOZO to polymer was 54% which was determined by ¹H NMR of the mixture. Solvent of CH₃CN was evaporated in vacuo. The residual waxy material was dissolved in MeOH and the MeOH solution was poured into a large amount of diethyl ether to precipitate polymeric materials. Drying the polymer in vacuo gave pale yellow solids of 1 (42% yield).

Alkaline Hydrolysis of Polymer 1 to Polymer 2

Polymer 1 (0.294 g) and NaOH (0.27 g) were placed in a sealed tube containing 1.77 ml of water and of MeOH. The tube was kept at 100°C for 100 hr. After the tube was cooled and opened, the reaction mixture was neutralized with dilute HCl solution and concentrated. The polymeric material was extracted with CHCl₃ and dried over Na₂SO₄. Evaporation of

CHCl3 and drying the residual polymer gave pale brown polymer 2 (34% yield).

REFERENCES

- 1. S. Kobayashi, T. Tokuzawa and T. Saegusa, Macromolecules 15, 707 (1982) and references cited therein.
- 2. T. Saegusa, H. Ikeda and H. Fujii, Macromolecules 5, 359 (1972).
- 3. T. Saegusa and H. Ikeda, Macromolecules 6, 808 (1973).
- 4. T. Saegusa, S. Kobayashi and A. Yamada, Makromol. Chem. 177, 2271 (1976).
- 5. T. Saegusa, S. Kobayashi and M. Ishiguro, Macromolecules 7, 958 (1974).
- 6. P. A. Small, Trans. Faraday Soc. 51, 1717 (1955).
- 7. A. Levy and M. Litt, Polymer Lett. 5, 881 (1967).
- As to a detailed study on kinetics and mechanism of the 5-MeOZO polymerization, see S. Kobayashi, K. Morikawa, N. Shimizu and T. Saegusa, Polymer Bull. the following paper.
- 9. S. Kobayashi, H. Danda and T. Saegusa, Bull. Chem. Soc. Jpn. 46, 3214 (1973).
- 10. I. Ugi and R. Meyr, Chem. Ber. 93, 239 (1960).

Accepted December 21, 1983